
Adv3Lite Quick Reference

[optional elements]

Things

itemName: Thing ‘vocab’ [@location]

 “desc”

 myProp = ‘foo’

 myMeth(bar)

 {

 return bar ?? name;

 }

;

vocab =
‘[article] name; adjs; nouns; pronoun’

article is optional and can be ‘a’, ‘an’, ‘some’ –
mass noun or ‘()’ = qualified name.

pronoun is ‘it’ ‘them’ ‘him’ or ‘her’
For ambiguously plural things use ‘it them’ if the
name is singular or ‘them it’ if the name is plural.

Words in the vocab string can be followed by
[n], [adj] or [prep] to mark the part of
speech if not the expected default. Weak tokens
can be followed by [weak] or placed in
parentheses.

Some common properties
isFixed - to make nonportable
isVehicle – to make it a vehicle
isLit – this Thing provides light
specialDesc = “A foo sits in the corner. “
familiar – the player character knows about
this object.

Rooms and Travel Connectors
fooPlace: Room ‘roomTitle’ [‘vocab’]

 “This looks a strange room. ”

 north = northRoom

 east = ‘The wall\’s in the way. ‘

 south = “You walk a few paces

 south but turn round when you

 don’t like what you see. “

 west: TravelConnector

 {

 canTravelerPass(traveler)

 {

 return !foo.isIn(traveler);

 }

 explainTravelBarrier(traveler)

 {

 “You can\’t go that way

 carrying the foo. “;

 }

 out asExit(north)

 southeast = fooDoor

 regions = [barRegion, fooRegion]

;

barRegion: Region;

Doors

A door connecting fooRoom to barRoom:

fooDoor: DSDoor ‘foo door’ @fooRoom

@barRoom

“The door looks reassuringly solid “

;

Alternatively:
fooDoor: Door ‘foo door’ @fooRoom

 “The door looks reassuringly solid “

 otherSide = barDoor

;

Similarly: Passage, PathPassage, StairwayUp,
StairwayDown (use destination not
otherrSide), DSPassage, DSPathPassage,
& DSStairway

Locks and Keys
fooKey: Key ‘foo key’

 actualLockList = [fooDoor,

 fooBox]

;

fooDoor: Door ‘foo door’ @fooRoom

 “It’s a door. ”

 otherSide = barDoor

 lockability = lockableWithKey

 isLocked = true

;

barDoor ‘bar door’ @barRoom

 “It’s another door. ”

 otherSide = fooDoor

 lockability = lockableWithoutKey

;

fooBox: OpenableContainer ‘foobox’

 “desc”

 lockability = lockableWithKey

 isLocked = true

;

Something lockable by a separate mechanism:

panelDoor: DSDoor ‘secret panel’

 “desc”

 lockability = indirectLockable

 indirectLockableMsg = ‘The panel

 can only be locked and unlocked

 by frobbing the foobar. ‘

;

Multiple Containment

A cooker with a pan on top and a pie inside:

cooker: Fixture ‘cooker’ @kitchen

 remapOn: SubComponent {}

 remapIn: SubComponent {

 isOpenable = true

 isOpen = nil

 }

;

+ pan: Thing ‘aluminium pan’

 sLoc(On)

;

+ pie: Food ‘apple pie; baked’

 “It looks well baked. “

 sLoc(In)

;

MultiLocs

Are Things in several places at once.

sky: MultiLoc, Distant 'sky; dark

crescent; moon stars'

 "The sky is dark tonight, with only

a crescent moon showing among the

myriad of stars. "

 notImportantMsg = 'The sky is way

too far above your head. '

 locationList = [outdoors]

 // outdoors could be a Region.

 // You could also list rooms here.

;

moveIntoAdd(loc) // add sky to loc

moveOutOf(loc)// move sky out of loc

moveInto(loc) // move sky to loc and

 out of everything else.

Defining New Actions

TActions take one or more direction objects:

DefineTAction(Frob)

;

VerbRule(Frob)

 (‘frob’ | ‘foofrob’) multiDobj

 [or singleDobj]

 : VerbProduction

 action = Frob

 verbPhrase = ‘frob/frobbing (what)’

 missingQ = ‘what do you want to frob’

;

TActions take a direct object and an indirect
object:

DefineTIAction(FrobWuth)

;

VerbRule(FrobWith)

 (‘frob’ | ‘foofrob’) multiDobj

 ‘with’ singleIobj

 : VerbProduction

 action = FrobWith

 verbPhrase = ‘frob/frobbing (what)

 (with what)’

 missingQ = ‘what do you want to frob|

 what do you want to frob it with’

 iobjReply = withSingleNoun

;

/* Example implementation on Thing: */

modify Thing

 dobjFor(Frob)

 {

 preCond = [touchObj

 verify()

 {

 If(!isFrobable)

 Illogical(‘{I} {can\’t} frob

 {that dobj. ‘);

 }

 check()

 {

 if(foo)

 “{I} {can\’t} frob {the dobj}

 while foo. “;

 }

 action

 {

 frobbed = true;

 }

 report()

 {

 “{I} frob{s/?ed}

 <<gActionListStr>>. “;

 }

 }

 isFrobable = nil

 frobbed = nil

;

SpecialVerbs
SpecialVerb 'ring' 'push' @doorbell;

SpecialVerb 'cross|walk across|go

 over' 'sp#act' [bigbridge,

 smallbridge];

‘sp#act’ triggers SpecialAction which you can
use for your own purposes by defining a
dobjFor(SpecialAction) block on the
intended direct object.
For an action that can apply to multiple direct
objects in a single command, use ‘sp#acts’.

